Difference between revisions of "Movement Recognition"

From BlackBox
Jump to navigation Jump to search
(changed references)
(Movement recognition in the Blackbox)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
= Movement recognition in the Blackbox =
 
= Movement recognition in the Blackbox =
The Blackbox currently supports Laban Basic Effort recognition through the [http://wiki.iat.sfu.ca/BlackBox/index.php/EffortDetect EffortDetect] system. See also the discussion below on LMA recognition.
+
The Blackbox currently supports Laban Basic Effort recognition through the [http://wiki.iat.sfu.ca/BlackBox/index.php/EffortDetect EffortDetect] system. For a discussion on LMA recognition in general, see the section on [[Sensor_Selection#Sensor-based_considerations_in_LMA_recognition| sensor-based considerations in LMA recognition]].
  
 
= Movement recognition outside the Blackbox =
 
= Movement recognition outside the Blackbox =
Line 24: Line 24:
 
= References =
 
= References =
  
Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. Information Technology in Biomedicine, IEEE Transactions on, 10(1), 156–167.
+
* Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. Information Technology in Biomedicine, IEEE Transactions on, 10(1), 156–167.
 
+
* Mathie, M. J., Celler, B. G., Lovell, N. H., & Coster, A. C. F. (2004). Classification of basic daily movements using a triaxial accelerometer. Medical & Biological Engineering & Computing, 42(5), 679-687. doi:10.1007/BF02347551
Mathie, M. J., Celler, B. G., Lovell, N. H., & Coster, A. C. F. (2004). Classification of basic daily movements using a triaxial accelerometer. Medical & Biological Engineering & Computing, 42(5), 679-687. doi:10.1007/BF02347551
+
* Morency, L. P., Quattoni, A., & Darrell, T. (2007). Latent-dynamic discriminative models for continuous gesture recognition. 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8).
 
+
* Sekine, M., Tamura, T., Togawa, T., & Fukui, Y. (2000). Classification of waist-acceleration signals in a continuous walking record. Medical Engineering & Physics, 22(4), 285-291. doi:16/S1350-4533(00)00041-2
Morency, L. P., Quattoni, A., & Darrell, T. (2007). Latent-dynamic discriminative models for continuous gesture recognition. 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8).
+
* Taylor, G. W., & Hinton, G. E. (2009). Factored conditional restricted boltzmann machines for modeling motion style. Proceedings of the 26th annual international conference on machine learning (pp. 1025–1032).
 
+
* Yang, C. C., & Hsu, Y. L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors, 10(8), 7772–7788.
Sekine, M., Tamura, T., Togawa, T., & Fukui, Y. (2000). Classification of waist-acceleration signals in a continuous walking record. Medical Engineering & Physics, 22(4), 285-291. doi:16/S1350-4533(00)00041-2
 
 
 
Taylor, G. W., & Hinton, G. E. (2009). Factored conditional restricted boltzmann machines for modeling motion style. Proceedings of the 26th annual international conference on machine learning (pp. 1025–1032).
 
 
 
Yang, C. C., & Hsu, Y. L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors, 10(8), 7772–7788.
 

Latest revision as of 12:31, 23 December 2011

Movement recognition in the Blackbox

The Blackbox currently supports Laban Basic Effort recognition through the EffortDetect system. For a discussion on LMA recognition in general, see the section on sensor-based considerations in LMA recognition.

Movement recognition outside the Blackbox

In general, a variety of heuristic techniques are applicable to movement information derived from sensor data. The following techniques below represent some that have been reported in the literature:

  • Frequency-domain analysis (Yang & Hsu, 2010)
    • Analysis of variance
    • Analysis of frequency peaks
    • Discrete wavelet transform(Sekine, Tamura, Togawa, & Fukui, 2000)
    • Signal magnitude area (Karantonis, Narayanan, M. Mathie, Lovell, & Celler, 2006)
  • Statistical approaches (Yang & Hsu, 2010)
    • Decision trees (M. J. Mathie, Celler, Lovell, & Coster, 2004)
    • k-nearest neighbor
    • support vector machines
    • Naïve Bayes classifier
    • Gaussian mixture model
    • Hidden Markov models
    • Dynamic Conditional Random Field (Morency, Quattoni, & Darrell, 2007)
    • Boltzmann machines (Taylor & Hinton, 2009)

(Note: Dynamic conditional random fields and Boltzmann machines were suggested by AAAI reviewers for any future versions of EffortDetect.)

References

  • Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. Information Technology in Biomedicine, IEEE Transactions on, 10(1), 156–167.
  • Mathie, M. J., Celler, B. G., Lovell, N. H., & Coster, A. C. F. (2004). Classification of basic daily movements using a triaxial accelerometer. Medical & Biological Engineering & Computing, 42(5), 679-687. doi:10.1007/BF02347551
  • Morency, L. P., Quattoni, A., & Darrell, T. (2007). Latent-dynamic discriminative models for continuous gesture recognition. 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8).
  • Sekine, M., Tamura, T., Togawa, T., & Fukui, Y. (2000). Classification of waist-acceleration signals in a continuous walking record. Medical Engineering & Physics, 22(4), 285-291. doi:16/S1350-4533(00)00041-2
  • Taylor, G. W., & Hinton, G. E. (2009). Factored conditional restricted boltzmann machines for modeling motion style. Proceedings of the 26th annual international conference on machine learning (pp. 1025–1032).
  • Yang, C. C., & Hsu, Y. L. (2010). A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors, 10(8), 7772–7788.